10/5 M.P. C. (Auto.) College, Tarkelpur, Banipada, 24/6/15 ### Semester - III Core Course V : Anatomy of Angiosperms – 100 marks (Credits -6 : Theory -4, Practical -2) Theory (each class 1 hour) | Unit -I | Introduction, Types of tissue Tissues: Classification of tissues, Simple and complex tissues (no phylogeny) Pits and plasmodesmata, Ergastic, Substancs | 7 Lecturers | |------------|---|-------------| | | Stem: Organization of shoot apex (Apical cell theory, Histogen theory, Tunica-Corpus theory) , Types of vascular bundles, structure of dicot and moncot stem . | 5 Lecturers | | Unit - II | Leaf: Structure of dicot and monocot leaf | 4 Lecturers | | | Root: Organization of Root apex (Apical cell theory, Histogen theory , Korper-Kappe theory) structure of dicot and monocot root | 4 Lecturers | | Unit - III | Vascular Cambium: Structure function and Seasonal activity of cambium, Secondary growth in root and dicot stem (sap wood and heart wood) | 5 Lecturers | | | Periderm :Development and composition of periderm and lenticels | 3 Lecturers | | Unit - IV | Adaptive and protective system: Epidermal tissue system (cuticle, waxes, Trichomes (Uni and Multicellular, glandular and non-glandular, two examples of each), stomata (Classification, Anatomical adaptation of xerophytes and Hydrophytes | 5 Lectures | | Unit- V | Secretary System : Hydathodes, cavaties , Lithosysts and Laticiferas Mechanical tissue System | 3 Lecturers | | Practical | Study of Anatomical details through permanent slides / temporary stain mounts / museum specimen with the help of suitable example. Apical meristem of root, shoot of vascular cambium. Distribution and types of parenchyma, Collenchyma and Sclerenchyma. Xylem: Tracheary elements- tracheids, vessel elements, thickenings; perforation plates, xylem fibers. Wood: ring porous; diffuse porous; heart and sap wood. Phloem: Sieve tubes-sieve plates; companion cells; Phloem fibers. Epidermal system: Cell types stomata types, trichomes, non-glandular and glandular. Root: Monocot, Dicot, secondary growth. Stem: Monocot, dicot -Primary and secondary growth, periderm; lenticels. Leaf: isobilateral, dorsiventral. | | 1 100 2.76- Delanger 39.6.16 Grand July 24 16 16 # Semester-III Core Course VI: Economic Botany - 100 marks (Credits-6: Theory-4, Practical-2) THEORY (Each class 1 hour): PRACTICAL (Each class 2 hours) [75 marks (Mid Sem 15 + End Sem 60)] Lectures: 60 [40 Theory + 20 Practical classes] | Unit-I | Origin of Cultivated Plants: Concept of Centres of Origin, their importance with reference to Vavilov's work. Examples of major plant introductions; Crop domestication and loss of genetic diversity. | 3 lectures | |----------|--|------------| | Unit-II | Cereals: Wheat and Rice (origin, morphology, processing & uses). | 3 lectures | | | Legumes: General account, importance to man and ecosystem. | 3 lectures | | | Sugars & Starches: Morphology and processing of sugarcane, roducts and by-products of sugarcane industry. Potato – morphology, propagation & uses. | 3 lectures | | Unit-III | Spices:Listing of important spices, their family and part used, economic importance with specialreference to fennel, saffron, clove and black pepper | 4 lectures | | | Beverages: Tea, Coffee (morphology, processing & uses) | 4 lectures | | | Drug-yielding plants: Therapeutic and habit-forming drugs with special reference to Cinchona, Digitalis, Papaver and Cannabis. | 4 lectures | | | Tobacco: Tobacco (Morphology, processing, uses and health hazards) | 2 lectures | | Unit-IV | Oils & Fats: General description, classification, extraction, their uses and health implications groundnut, coconut, linseed and <i>Brassica</i> and Coconut (Botanical name, family & uses) | 4 lectures | | | Essential Oils: General account, extraction methods, comparison with fatty oils & their uses. | 4 lectures | | Unit-V | Natural Rubber: Para-rubber: tapping, processing and uses. | 2 lectures | | Cine | Timber plants: General account with special reference to teak and nine. | 2 Lectures | | | Fibres: Classification based on the origin of fibres, Cotton and Jute (morphology, extraction and uses). | 2 lectures | #### Practical (20 classes, each class of 2h) | Practical | Cereals: Rice (habit sketch, study of paddy and grain, starch grains, micro-chemical tests). Legumes: Soya bean, Groundnut, (habit, fruit, seed structure, micro-chemical tests). | |-----------|---| | • | 3. Sugars & Starches: Sugarcane (habit sketch; cane juice- micro-chemical tests), Potato(habit sketch, tuber morphology, T.S. tuber to show localization of starch grains, w.m. starch grains, micro-chemical tests). | | | 4. Spices: Black pepper, Fennel and Clove (habit and sections). | | | 5. Beverages: Tea (plant specimen, tea leaves), Coffee (plant specimen, beans). | | | 6. Oils & Fats: Coconut- T.S. nut, Mustard-plant specimen, seeds; tests for fats in crushedseeds. | | | 7. Essential oil-yielding plants: Habit sketch of Rosa, Vetiveria, Santalum and Eucalyptus (specimens/photographs). | | | 8. Rubber: specimen, photograph/model of tapping, samples of rubber products. | | | 9. Drug-yielding plants: Specimens of Digitalis, PapaverandCannabis. | | | 10. Tobacco: specimen and products of Tobacco. | | | 11. Woods: Tectona, Pinus: Specimen, Section of young stem. | | | 12. Fibre-yielding plants: Cotton (specimen, whole mount of seed to show lint and fuzz; whole mount of fibre and test for cellulose), Jute (specimen, transverse section of stem, test for lignin on transverse section of stem and fibre). | Martine Behanst Harden Jan 19 Semester-IV Core Course VII: Genetics & Plant Biotechnology – 100 marks (Credits-6: Theory-4, Practical-2) THEORY (Each class 1 hour): PRACTICAL (Each class 2 hours) [75 marks (Mid Sem 15 + End Sem 60)] Lectures: 60 [40 Theory + 20 Practical classes] | Unit-I | inheritance; Chromosome theory of inheritance; Autosomes and sex chromosomes; Probability and pedigree analysis; Incomplete dominance and codominance; Multiple alleles, Lethal alleles, Epistasis, Pleiotropy. | 4 lectures | |----------|---|------------| | | The Structures of DNA and RNA / Genetic Material: DNA Structure. Miescher to Watson and Crick- historic perspective, DNA structure, Salient features of double helix, Types of DNA, Types of genetic material, denaturation and renaturation; Organization of DNA- Prokaryotes, Viruses, | 6 lectures | | Unit-II | The replication of DNA: Chemistry of DNA synthesis (Komberg's discovery); General principles – bidirectional, semi-conservative and semi-discontinuous replication | 4 lectures | | | Central dogma and genetic code: Key experiments establishing-The Central Dogma, Genetic code. Transcription in prokaryotes; Transcription in aukaryotes | 4 lectures | | | Translation (Prokaryotes and eukaryotes): Ribosome structure and assembly, mRNA; aminoacyl tRNA synthetases; Various steps in protein synthesis. | 4 lectures | | Unit-III | Linkage, crossing over and chromosome mapping: Linkage and crossing over-Cytological basis of crossing over; Recombination frequency, two factor and three factor crosses; Numericals based on gene mapping; Sex Linkage | 6 lectures | | Unit-IV | Variation in chromosome number and structure: Deletion, Duplication, Inversion, Translocation, Position effect, Euploidy and Aneuploidy | 8 lectures | | | Gene mutations: Types of mutations; Molecular basis of Mutations, Mutagens – physical and chemical (Base analogs, deaminating, alkylating and intercalating agents): Detection of mutations: CIB method. | 6 lectures | | Unit-V | Fine structure of gene: Classical vs molecular concepts of gene; | 6 lectures | | | Plant Tissue Culture: Historical perspective; Aseptic tissueculture techniques, Composition of media; Nutrient and hormone requirements (role of vitamins and hormones). | 6 lectures | | | Totipotency; Organogenesis; Embryogenesis (somatic and zygotic); Protoplast isolation, culture and fusion; Tissue culture applications (micropropagation, androgenesis, virus elimination, secondary metabolite production, haploids, triploids and hybrids; Cryopreservation; Germplasm Conservation). | | Practical (20 classes, each class of 2h) | Practical | Meiosis through temporary squash preparation. Mendel's laws through seed ratios. Laboratory exercises in probability and chi-square analysis. | |-----------|---| | | 3. Chromosome mapping using test cross data. 4. Pedigree analysis for dominant and recessive autosomal and sex linked traits with floral chart. | M. J. b. - Malany Macked July 24.6.16 ## Semester-IV Core Course VIII: Plant Ecology and Phytogeography - 100 marks (Credits-6: Theory-4, Practical-2) THEORY (Each class 1 hour): PRACTICAL (Each class 2 hours) [75 marks (Mid Sem 15 + End Sem 60)] Lectures: 60 [40 Theory + 20 Practical classes] | Unit-I | Introduction Concept of ecology, Autoecology, Synecology, system ecology, Levels of organization, Inter-relationships between the living world and the environment, the components of environment. | 2 lectures | |----------|--|------------| | Unit-H | Soil: Importance; Origin; Formation; Composition; Physical; Chemical and Biological components; Soil profile. | 5 lectures | | | Water: Importance: States of water in the environment; Atmospheric moisture; Precipitation types (rain, fog, snow, hail, dew); Hydrological Cycle. | 2 lectures | | | Light, temperature, wind and fire: Variations; adaptations of plants to their variation. | 4 lectures | | Unit-III | Biotic interactions: | 2 lectures | | | Population ecology: Characteristics and Dynamics . Ecological Speciation | 4 lectures | | | Plant communities: Concept of ecological amplitude; Habitat and niche; Characters: analytical and synthetic; Ecotone and edge effect; succession – types. | 4 lectures | | Unit-IV | Ecosystems: Trophic organisation; Food chains and Food webs; Ecological pyramids. | 4 lectures | | | Functional aspects of ecosystem: Principles and models of energy flow;
Production and productivity; Biogeochemical cycles; Cycling of Carbon,
Nitrogen and Phosphorus. | 5 lectures | | Unit-V | Phytogeography: Principles; Theory of tolerance; Endemism; Brief description of major terrestrial biomes (one each from tropical, temperate & tundra). | 8 lectures | #### Practical (20 classes, each class of 2h) | Practical | Study of instruments used to measure microclimatic variables: Soil thermometer, maximum and minimum thermometer, anemometer, psychrometer/hygrometer, rain gauge and lux meter. | |-----------|---| | | 2. Determination of pH of various soil and water samples (pH meter, universal indicator/Lovibond comparator and pH paper) | | | 3. Analysis for carbonates, chlorides, nitrates, sulphates, organic matter and base deficiency from two soil samples by rapid field tests. | | | 4. Determination of organic matter of different soil samples by Walkley & Black rapid titration method. | | | Comparison of bulk density, porosity and rate of infiltration of water in soils of three
habitats. | | | Determination of dissolved oxygen of water samples from polluted and unpolluted
sources. | | | 7. (a). Study of morphological adaptations of hydrophytes and xerophytes (four each). (b). Study of biotic interactions of the following: Stem parasite (Cuscuta), Root parasite (Orobanche) Epiphytes, Predation (Insectivorous plants). | | | 8. Determination of minimal quadrat size for the study of herbaceous vegetation in the college campus, by species area curve method (species to be listed).9. Quantitative analysis of herbaceous vegetation in the college campus for frequency and | 1/ 24.6.16 January 16 18 ### Semester-V IV Core Course IX: Plant Systematics - 100 marks (Credits-6: Theory-4, Practical-2) THEORY (Each class 1 hour): PRACTICAL (Each class 2 hours) [75 marks (Mid Sem 15 + End Sem 60)] Lectures: 60 [40 Theory + 20 Practical classes] | Unit-I | Plant identification, Classification, Nomenclature; Biosystematics. | 2 lectures | |----------|--|------------| | | Identification: Field inventory; Functions of Herbarium; Important herbaria and botanical gardens of the world and India; Virtual herbarium. | 5 lectures | | Unit-II | Taxonomic hierarchy: Concept of taxa (family, genus, species); Categories and taxonomic hierarchy; Species concept (taxonomic, biological, evolutionary). | 5 lectures | | | Botanical nomenclature: Principles and rules (ICN); principle of priority and its limitations. | 5 lectures | | Unit-III | Systematics- an interdisciplinary science: Evidence from palynology, cytology, phytochemistry and molecular data. | 6 lectures | | | Systems of classification: Major contributions of Hutchinson, Takhtajan and Cronquist; Classification systems of Bentham and Hooker (upto series) and Engler and Prantl (upto series); Brief reference of Angiosperm Phylogeny Group (APG III) classification. | 6 lectures | | Unit-IV | Biometrics, numerical taxonomy and cladistics: Characters; Variations; cluster analysis; Phenograms, cladograms. | 4 lectures | | Unit-V | Phylogeny of Angiosperms: Homology and analogy, parallelism and convergence, monophyly, Paraphyly, polyphyly and clades).origin& evolution of angiosperms; co-evolution of angiosperms and animals. | 7 lectures | | | Cyclidion of angroupe and allowed specific (2b) | | Practical (20 classes, each class of 2h) 1. Study of vegetative and floral characters of the following families (Description, V.S. Practical flower, section of ovary, floral diagram/s, floral formula/e and systematic position according to Bentham & Hooker's system of classification): Ranunculaceae - Ranunculus, Delphinium Brassicaceae - Brassica, Alyssum / Iberis Myrtaceae - Eucalyptus, Callistemon Umbelliferae - Coriandrum / Anethum / Foeniculum Asteraceae - Sonchus/Launaea, Vernonia/Ageratum, Eclipta/Tridax Solanaceae - Solanum nigrum/Withania Lamiaceae - Salvia/Ocimum Euphorbiaceae - Euphorbia hirta/E.milii, Jatropha Liliaceae - Asphodelus/Lilium/Allium Poaceae - Triticum/Hordeum/Avena 2. Field visit (local) - Subject to grant of funds from the university. 3. Mounting of a properly dried and pressed specimen of any wild plant with herbarium label (to be submitted in the record book) Suggested Readings - 1. Singh, G. (2012). Plant Systematics: Theory and Practice. Oxford & IBH Pvt. Ltd., New Delhi. 3rdedition. - 2. Jeffrey, C. (1982). An Introduction to Plant Taxonomy. Cambridge University Press, Cambridge. - 3. Judd, W.S., Campbell, C.S., Kellogg, E.A., Stevens, P.F. (2002). Plant Systematics-A Phylogenetic Approach. Sinauer Associates Inc., U.S.A. 2nd edition. - 4. Maheshwari, J.K. (1963). Flora of Delhi. CSIR, New Delhi. - 5. Radford, A.E. (1986). Fundamentals of Plant Systematics. Harper and Row, New York. SN:26.16 * north will ## Semester-W Core Course X: Reproductive Biology of Angiosperms - 100 marks (Credits-6: Theory-4, Practical-2) THEORY (Each class 1 hour): PRACTICAL (Each class 2 hours) [75 marks (Mid Sem 15 + End Sem 60)] Lectures: 60 |40 Theory + 20 Practical classes| | Unit-I | Strasburger, S.G. Nawaschin, P. Maheshwari, B.M. Johri, W.A. Jensen, J. | 2 lectures | |----------|--|------------| | | Heslop-Harrison) and scope. Anther: Anther wall: Structure and functions, microsporogenesis. | 2 lectures | | Unit-II | Pollen biology: Microgametogenesis; Pollen wall structure, MOO (male germ unit) structure, NPC system; Palynology and scope (a brief account); | 5 lectures | | Unit-III | Ovule: Structure; Types; Special structures-endothelium; Female gametophyte- megasporogenesis (monosporic, bisporic and tetrasporic) and megagametogenesis (details of <i>Polygonum</i> type); Organization and ultrastructure of mature embryo sac. | 5 lectures | | | Endosperm: Types development, structure and functions. | 3 lectures | | | Embryo: Six types of embryogeny; General pattern of development of dicot | 6 lectures | | Unit-IV | Pollination and fertilization: Pollination types and significance; double | 4 lectures | | | Self incompatibility: Basic concepts; Methods to overcome self-incompatibility: Intraovarian and in vitro pollination; Cybrids, in vitro fertilization. | 5 lectures | | Unit-V | Sand, Structure, importance and dispersal mechanisms | 3 lectures | | Unit-V | Polyembryony and apomixes: Introduction; Classification; Causes and | | | | Germline transformation: Pollen grain and ovules through pollen tube pathway method/ Agrobacterium/ biolistic. | 4 lectures | Practical (20 classes, each class of 2h) 1. Anther: Wall and its ontogeny; Tapetum (amoeboid and glandular); MMC, spore tetrads, Practical uninucleate, bicelled and dehisced anther stages through slides/micrographs, male germ unit (MGU) through photographs and schematic representation. 3. Pollen grains: Fresh and acetolyzed showing ornamentation and aperture, psuedomonads, polyads, pollinia (slides/photographs,fresh material), ultrastructure of pollen wall(micrograph); Pollen viability: Tetrazolium test.germination: Calculation of percentage germination in different media using hanging drop method. 4. Ovule: Types-anatropous, orthotropous, amphitropous/campylotropous, circinotropous, unitegmic, bitegmic; Tenuinucellate and crassinucellate; Special structures: aril (permanent caruncle and hypostase, obturator, Endothelium, slides/specimens/photographs). 5. Female gametophyte through permanent slides/ photographs: Types, ultrastructure of mature egg apparatus. 6. Embryogenesis: Study of development of dicot embryo through permanent slides; dissection of developing seeds for embryos at various developmental stages; Study of suspensor through electron micrographs. IM. M. Mohamyr Ja. 6.14